Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Charoen Pakhathirathien, ${ }^{\text {a }}$
Suchada Chantrapromma, ${ }^{\text {a* }}{ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {b }}$ * Shazia Anjum, ${ }^{\text {c }}$ Atta-ur-Rahman ${ }^{\mathrm{c}}$ and Chatchanok Karalai ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {ch }} \mathrm{HEJ}$ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan

Correspondence e-mail: suchada.c@psu.ac.th, hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.089$
$w R$ factor $=0.264$
Data-to-parameter ratio $=7.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-icosahydro-1H-cyclopenta[a]chrysen-9-yl 4-hydroxy-3-methoxycinnamate

The title compound, $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{4}$, a lupane triterpene, was isolated from the hypocotyls of Ceriops tagal (Perr.) C. B. Robinson. There are two crystallographically independent molecules in the asymmetric unit. In both molecules, the cyclopentane ring adopts an envelope conformation. The molecular structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds link the molecules into chains along the a axis.

Comment

The genus Ceriops (Rhizophoraceae) comprises two species, namely Ceriops tagal (Perr.) C. B. Robinson and Ceriops decandra (Griff.) Ding Hou. These are mangrove plants widely distributed from East Africa and Madagascar throughout tropical Asia and Queensland to Melanesia and Micronesia (Tomlinson, 1986). The bark of C. tagal (Perr.) has been used for the treatment of infected wounds in Thailand and as a treatment for obstetric and haemorrhagic conditions in the Philippines, and its decoction used as a substitute for quinine in the treatment of malaria (Bamroongrugsa, 1999). Investigation of the crude hexane and dichloromethane extract of the hypocotyls of C. tagal (Perr.) has exhibited antituberculous and cytotoxic activity. The results prompted us to make a further study of the extracts.

Received 2 August 2005 Accepted 10 August 2005 Online 17 August 2005

(I)

The title compound, (I), also known as 3β - E-feruloyllupeol, has been isolated for the first time from C. tagal (Perr.), which was collected from Nakhon-Si-Thammarat province in
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering scheme. For clarity, H atoms have been omitted.
southern Thailand. As part of our research on bioactive compounds from Thai medicinal plants (Chantrapromma et al., 2003, 2004, 2005; Boonnak et al., 2005; Thongdeeying et al., 2005), we have undertaken the X-ray crystal structure analysis of (I) in order to establish its molecular structure and relative stereochemistry. The title compound exhibits significant levels of strong activity ($1.75 \mathrm{\mu g} \mathrm{ml}^{-1}$) against the NIC-H187 cell line (human small-cell lung cancer).

The asymmetric unit of (I) contains two crystallographically independent molecules, A and B, which have similar chiralities, bond lengths and angles (Fig. 1). The molecules are approximately related by a local twofold rotation axis. The bond lengths in (I) show normal values (Allen et al., 1987). All the ring junctions in the lupane nucleus are trans-fused. In both molecules, the cyclohexane rings adopt chair conformations and the cyclopentane ring has an envelope conformation, with atom C 17 displaced from the C18/C19/C20/C21 plane by $0.676(10) \AA$ in molecule A and $0.700(10) \AA$ in molecule B. The feruloyloxy group ($\mathrm{O} 1-\mathrm{O} 4 / \mathrm{C} 31-\mathrm{C} 40$) is equatorially attached at atom $\mathrm{C} 3\left[\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1=-178.8(5)^{\circ}\right.$ in molecule A and $-179.9(5)^{\circ}$ in molecule B], and the $\mathrm{C} 31-$ $\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$ torsion angle of $-88.8(7)^{\circ}$ in molecule A [$-85.7(7)^{\circ}$ in molecule B] indicates a (- -synclinal conformation. The methoxy group is slightly twisted away from the benzene ring [$\mathrm{C} 40-\mathrm{O} 3-\mathrm{C} 38-\mathrm{C} 39=8.9(13)^{\circ}$ in molecule A and 15.5 (12) ${ }^{\circ}$ in molecule $\left.B\right]$. The $\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 22-\mathrm{C} 23$ torsion angle of $104.6(9)^{\circ}\left[102.5(8)^{\circ}\right.$ in molecule $\left.B\right]$ describes the orientation of the isopropenyl group with respect to the

Figure 2
The crystal packing of (I), viewed down the c axis. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.
lupane nucleus. The $\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 22-\mathrm{C} 24$ torsion angle is $47.3(11)^{\circ}\left[46.4(8)^{\circ}\right.$ in molecule $\left.B\right]$. The bond lengths and angles in the lupane skeleton are comparable with the corresponding values in 3β-hydroxylupan-29-oic acid (Thongdeeying et al., 2005) and those in the feruloyloxy substituent are comparable with the closely related substituent in 3α-feruloyltaraxerol dichloromethane solvate (Chantrapromma et al., 2003).

The molecular structure of (I) is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds link the molecules into chains along the a axis (Fig. 2).

Experimental

Dried milled hypocotyls of Ceriops tagal (Perr.) C. O. Robinson (5.3 kg) were successively extracted with hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation resulted in crude extracts of hexane (32.9 g) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(128.6 \mathrm{~g})$, respectively. A portion of the hexane extract (17.1 g) was subjected to column chromatography using gradient elution of hexane and ethyl acetate ($10: 0$ to $7: 3$), to afford 12 fractions ($A 1-$ $A 12)$. Fraction $A 2(1.43 \mathrm{~g})$ was subjected to quick column chromatography (QCC) using hexane and ethyl acetate mixtures with increasing polarity as eluting solvent (10:0 to 9:1), to afford compound (I) (160 mg). Single crystals of (I) were obtained after recrystallization from acetone \{m.p. $502-503 \mathrm{~K},[\alpha]^{27}{ }_{\mathrm{D}}+23.26^{\circ}(c=$ $0.043, \mathrm{MeOH})$.

Crystal data

[^0][^1]
Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.960, T_{\text {max }}=0.985$
17061 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.089$
$w R\left(F^{2}\right)=0.264$
$S=1.05$
6145 reflections
811 parameters
H -atom parameters constrained

6145 independent reflections 5155 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-40 \rightarrow 43$
$l=-12 \rightarrow 14$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1917 P)^{2}\right. \\
& \quad+1.227 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.60 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1 B-\mathrm{C} 31 B$	$1.334(8)$	$\mathrm{O} 1 A-\mathrm{C} 31 A$	$1.322(9)$
$\mathrm{O} 1 B-\mathrm{C} 3 B$	$1.465(7)$	$\mathrm{O} 1 A-\mathrm{C} 3 A$	$1.462(7)$
$\mathrm{O} 2 B-\mathrm{C} 31 B$	$1.191(8)$	$\mathrm{O} 2 A-\mathrm{C} 31 A$	1.221 (9)
$\mathrm{O} 3 B-\mathrm{C} 38 B$	$1.334(12)$	$\mathrm{O} 3 A-\mathrm{C} 38 A$	$1.375(12)$
$\mathrm{O} 3 B-\mathrm{C} 40 B$	$1.424(13)$	$\mathrm{O} 3 A-\mathrm{C} 40 A$	$1.405(15)$
$\mathrm{O} 4 B-\mathrm{C} 37 B$	$1.371(10)$	$\mathrm{O} 4 A-\mathrm{C} 37 A$	$1.374(12)$
$\mathrm{C} 32 B-\mathrm{C} 33 B$	$1.306(10)$	$\mathrm{C} 32 A-\mathrm{C} 33 A$	$1.304(11)$
$\mathrm{C} 31 B-\mathrm{O} 1 B-\mathrm{C} 3 B$	$117.8(5)$	$\mathrm{C} 31 A-\mathrm{O} 1 A-\mathrm{C} 3 A$	$118.6(5)$
$\mathrm{O} 1 B-\mathrm{C} 31 B-\mathrm{C} 32 B$	$111.0(5)$	$\mathrm{O} 1 A-\mathrm{C} 31 A-\mathrm{C} 32 A$	112.4 (6)
$\mathrm{C} 31 B-\mathrm{O} 1 B-\mathrm{C} 3 B-\mathrm{C} 2 B$	$-85.7(7)$	$\mathrm{C} 31 A-\mathrm{O} 1 A-\mathrm{C} 3 A-\mathrm{C} 2 A$	$-88.8(7)$
$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{O} 1 B$	$-179.9(5)$	$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{O} 1 A$	$-178.8(5)$
$\mathrm{C} 20 B-\mathrm{C} 19 B-\mathrm{C} 22 B-\mathrm{C} 23 B$	$102.5(8)$	$\mathrm{C} 20 A-\mathrm{C} 19 A-\mathrm{C} 22 A-\mathrm{C} 23 A$	104.6 (9)
$\mathrm{C} 18 B-\mathrm{C} 19 B-\mathrm{C} 22 B-\mathrm{C} 24 B$	$46.4(8)$	$\mathrm{C} 18 A-\mathrm{C} 19 A-\mathrm{C} 22 A-\mathrm{C} 24 A$	47.3 (11)
$\mathrm{C} 40 B-\mathrm{O} 3 B-\mathrm{C} 38 B-\mathrm{C} 39 B$	$15.5(12)$	$\mathrm{C} 40 A-\mathrm{O} 3 A-\mathrm{C} 38 A-\mathrm{C} 39 A$	8.9 (13)

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 B-\mathrm{H} 4 B A \cdots \mathrm{O} 3 B$	0.82	2.22	2.639 (12)	112
$\mathrm{C} 10 A-\mathrm{H} 10 B \cdots \mathrm{O} 2 A^{\text {i }}$	0.97	2.50	3.378 (9)	150
$\mathrm{C} 3 A-\mathrm{H} 3 A A \cdots \mathrm{O} 2 A$	0.98	2.37	2.719 (9)	100
$\mathrm{C} 26 B-\mathrm{H} 26 A \cdots \mathrm{O} 1 B$	0.96	2.48	2.897 (9)	106
$\mathrm{C} 26 A-\mathrm{H} 26 \mathrm{D} \cdots \mathrm{O} 1 A$	0.96	2.52	2.899 (10)	103
$\mathrm{C} 33 B-\mathrm{H} 33 A \cdots \mathrm{O} 2 B$	0.93	2.53	2.852 (9)	101
$\mathrm{C} 33 A-\mathrm{H} 33 B \cdots \mathrm{O} 2 A$	0.93	2.54	2.858 (9)	100

[^2]H atoms were placed in calculated positions, with $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$ and $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for hydroxyl and methyl H atoms and $1.2 U_{\text {eq }}$ for the remaining H atoms. A rotating group model was used for the methyl and hydroxy groups. In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement. The high R values may be a result of the poor diffraction quality of the crystal or of unresolved twinning [F^{2} (observed) is greater than F^{2} (calculated) for the most disagreeable/anomalous reflections]. It is very difficult to obtain good crystals of the title compound, and that which was used for the present experiment was the best available after many crystallization attempts.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

CP thanks Prince of Songkla University for a Graduate Study Grant. The authors thank Prince of Songkla University and the Pakistan Government, also the Malaysian Government and Universiti Sains Malaysia for a Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/ 635003/A118.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bamroongrugsa, N. (1999). Songklanakarin J. Sci. Technol. 21, 377-386.
Boonnak, N., Chantrapromma, S., Fun, H.-K., Anjum, S., Atta-ur-Rahman \& Karalai, C. (2005). Acta Cryst. E61, o410-o412.
Bruker (2002). SMART (Version 5.62) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Chantrapromma, K., Saewan, N., Fun, H.-K., Chantrapromma, S. \& Rahman, A. A. (2004). Acta Cryst. E60, o312-o314.

Chantrapromma, S., Boonnak, N., Fun, H.-K., Anjum, S. \& Atta-ur-Rahman (2005). Acta Cryst. E61, o2136-o2138.

Chantrapromma, S., Fun, H.-K., Razak, I. A., Laphookhieo, S. \& Karalai, C. (2003). Acta Cryst. E59, o1864-o1866.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thongdeeying, P., Chantrapromma, S., Fun, H.-K., Anjum, S., Ali, S. \& Ponglimanont, C. (2005). Acta Cryst. E61, o1861-o1863.
Tomlinson, P. B. (1986). The Botany of Mangroves, pp. 352-357. Cambridge University Press.

[^0]: $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{4}$
 $M_{r}=602.86$
 Monoclinic, $P 2_{1}$ 。
 $a=7.9738$ (17) \AA
 $b=36.351$ (8) \AA
 $c=11.875$ (3) \AA
 $\beta=92.012(3)^{\circ}$
 $V=3439.9(14) \AA^{3}$
 $Z=4$

[^1]: $D_{x}=1.164 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation
 Cell parameters from 17061 reflections
 $\theta=1.7-25.0^{\circ}$
 $\mu=0.07 \mathrm{~mm}^{-1}$
 $T=293$ (2) K
 Block, colourless
 $0.56 \times 0.29 \times 0.20 \mathrm{~mm}$

[^2]: Symmetry code: (i) $x-1, y, z$.

