organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Charoen Pakhathirathien,^a Suchada Chantrapromma,^a* Hoong-Kun Fun,^b* Shazia Anjum,^c Atta-ur-Rahman^c and Chatchanok Karalai^a

^aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cHEJ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan

Correspondence e-mail: suchada.c@psu.ac.th, hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.010 Å R factor = 0.089 wR factor = 0.264 Data-to-parameter ratio = 7.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethylicosahydro-1*H*-cyclopenta[*a*]chrysen-9-yl 4-hydroxy-3-methoxycinnamate

The title compound, $C_{40}H_{58}O_4$, a lupane triterpene, was isolated from the hypocotyls of *Ceriops tagal* (Perr.) C. B. Robinson. There are two crystallographically independent molecules in the asymmetric unit. In both molecules, the cyclopentane ring adopts an envelope conformation. The molecular structure is stabilized by $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds. $C-H\cdots O$ intermolecular hydrogen bonds link the molecules into chains along the *a* axis. Received 2 August 2005 Accepted 10 August 2005 Online 17 August 2005

Comment

The genus *Ceriops* (Rhizophoraceae) comprises two species, namely *Ceriops tagal* (Perr.) C. B. Robinson and *Ceriops decandra* (Griff.) Ding Hou. These are mangrove plants widely distributed from East Africa and Madagascar throughout tropical Asia and Queensland to Melanesia and Micronesia (Tomlinson, 1986). The bark of *C. tagal* (Perr.) has been used for the treatment of infected wounds in Thailand and as a treatment for obstetric and haemorrhagic conditions in the Philippines, and its decoction used as a substitute for quinine in the treatment of malaria (Bamroongrugsa, 1999). Investigation of the crude hexane and dichloromethane extract of the hypocotyls of *C. tagal* (Perr.) has exhibited antituberculous and cytotoxic activity. The results prompted us to make a further study of the extracts.

The title compound, (I), also known as 3β -*E*-feruloyllupeol, has been isolated for the first time from *C. tagal* (Perr.), which was collected from Nakhon-Si-Thammarat province in

 \odot 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering scheme. For clarity, H atoms have been omitted.

southern Thailand. As part of our research on bioactive compounds from Thai medicinal plants (Chantrapromma *et al.*, 2003, 2004, 2005; Boonnak *et al.*, 2005; Thongdeeying *et al.*, 2005), we have undertaken the X-ray crystal structure analysis of (I) in order to establish its molecular structure and relative stereochemistry. The title compound exhibits significant levels of strong activity (1.75 μ g ml⁻¹) against the NIC-H187 cell line (human small-cell lung cancer).

The asymmetric unit of (I) contains two crystallographically independent molecules, A and B, which have similar chiralities, bond lengths and angles (Fig. 1). The molecules are approximately related by a local twofold rotation axis. The bond lengths in (I) show normal values (Allen et al., 1987). All the ring junctions in the lupane nucleus are trans-fused. In both molecules, the cyclohexane rings adopt chair conformations and the cyclopentane ring has an envelope conformation, with atom C17 displaced from the C18/C19/C20/C21 plane by 0.676 (10) Å in molecule A and 0.700 (10) Å in molecule B. The feruloyloxy group (O1-O4/C31-C40) is equatorially attached at atom C3 [C1-C2-C3-O1 = $-178.8(5)^{\circ}$ in molecule A and $-179.9(5)^{\circ}$ in molecule B], and the C31-O1-C3-C2 torsion angle of $-88.8(7)^{\circ}$ in molecule A $[-85.7 (7)^{\circ}$ in molecule B] indicates a (-)-synclinal conformation. The methoxy group is slightly twisted away from the benzene ring $[C40-O3-C38-C39 = 8.9 (13)^{\circ}$ in molecule A and $15.5 (12)^{\circ}$ in molecule B]. The C20-C19-C22-C23 torsion angle of 104.6 (9)° [102.5 (8)° in molecule B] describes the orientation of the isopropenyl group with respect to the

lupane nucleus. The C18–C19–C22–C24 torsion angle is 47.3 (11)° [46.4 (8)° in molecule *B*]. The bond lengths and angles in the lupane skeleton are comparable with the corresponding values in 3β -hydroxylupan-29-oic acid (Thongdeeying *et al.*, 2005) and those in the feruloyloxy substituent are comparable with the closely related substituent in 3α -feruloyltaraxerol dichloromethane solvate (Chantrapromma *et al.*, 2003).

The molecular structure of (I) is stabilized by $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Table 2). $C-H\cdots O$ intermolecular hydrogen bonds link the molecules into chains along the *a* axis (Fig. 2).

Experimental

Dried milled hypocotyls of *Ceriops tagal* (Perr.) C. O. Robinson (5.3 kg) were successively extracted with hexane and CH₂Cl₂. Evaporation resulted in crude extracts of hexane (32.9 g) and CH₂Cl₂ (128.6 g), respectively. A portion of the hexane extract (17.1 g) was subjected to column chromatography using gradient elution of hexane and ethyl acetate (10:0 to 7:3), to afford 12 fractions (A1–A12). Fraction A2 (1.43 g) was subjected to quick column chromatography (QCC) using hexane and ethyl acetate mixtures with increasing polarity as eluting solvent (10:0 to 9:1), to afford compound (I) (160 mg). Single crystals of (I) were obtained after recrystallization from acetone {m.p. 502–503 K, $[\alpha]^{27}_{\rm D}$ +23.26° (c = 0.043, MeOH)}.

Crystal d	late
-----------	------

$C_{40}H_{58}O_4$	$D_x = 1.164 \text{ Mg m}^{-3}$
$M_r = 602.86$	Mo $K\alpha$ radiation
Monoclinic, $P2_1$	Cell parameters from 17061
u = 7.9738 (17) Å	reflections
p = 36.351 (8) Å	$\theta = 1.7-25.0^{\circ}$
r = 11.875 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 92.012 \ (3)^{\circ}$	T = 293 (2) K
$V = 3439.9 (14) \text{ Å}^3$	Block, colourless
Z = 4	$0.56 \times 0.29 \times 0.20 \text{ mm}$

organic papers

Data collection

Bruker SMART APEX CCD area-	6145 independe
detector diffractometer	5155 reflection
ω scans	$R_{\rm int} = 0.044$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.960, \ T_{\max} = 0.985$	$k = -40 \rightarrow 43$
17061 measured reflections	$l = -12 \rightarrow 14$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.1917P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.089$	+ 1.227P]
$wR(F^2) = 0.264$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
6145 reflections	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
811 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

O1B-C31B	1.334 (8)	O1A-C31A	1.322 (9)
O1B-C3B	1.465 (7)	O1A - C3A	1.462 (7)
O2B-C31B	1.191 (8)	O2A-C31A	1.221 (9)
O3B-C38B	1.334 (12)	O3A-C38A	1.375 (12)
O3B-C40B	1.424 (13)	O3A-C40A	1.405 (15)
O4B-C37B	1.371 (10)	O4A-C37A	1.374 (12)
C32B-C33B	1.306 (10)	C32A-C33A	1.304 (11)
C31B-O1B-C3B	117.8 (5)	C31A-O1A-C3A	118.6 (5)
O1B-C31B-C32B	111.0 (5)	O1A-C31A-C32A	112.4 (6)
C31B-O1B-C3B-C2B	-85.7 (7)	C31A-O1A-C3A-C2A	-88.8(7)
C1B-C2B-C3B-O1B	-179.9(5)	C1A-C2A-C3A-O1A	-178.8(5)
C20B-C19B-C22B-C23	B 102.5 (8)	C20A-C19A-C22A-C22	3A 104.6 (9)
C18B-C19B-C22B-C24	<i>B</i> 46.4 (8)	C18A-C19A-C22A-C24	4A 47.3 (11
C40B-O3B-C38B-C39B	B 15.5 (12)	C40A-O3A-C38A-C39	A 8.9 (13

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4B - H4BA \cdots O3B$	0.82	2.22	2.639 (12)	112
$C10A - H10B \cdot \cdot \cdot O2A^{i}$	0.97	2.50	3.378 (9)	150
$C3A - H3AA \cdots O2A$	0.98	2.37	2.719 (9)	100
$C26B - H26A \cdots O1B$	0.96	2.48	2.897 (9)	106
$C26A - H26D \cdots O1A$	0.96	2.52	2.899 (10)	103
$C33B-H33A\cdots O2B$	0.93	2.53	2.852 (9)	101
$C33A - H33B \cdots O2A$	0.93	2.54	2.858 (9)	100

Symmetry code: (i) x - 1, y, z.

of 0.82 Å and C-H distances in the range 0.93–0.98 Å. The $U_{iso}(H)$ dependent reflections values were constrained to be $1.5U_{eq}$ of the carrier atom for hydroxyl flections with $I > 2\sigma(I)$ and methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl and hydroxy groups. In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement. The high R values may be a result of the poor diffraction quality of the crystal or of unresolved twinning $[F^2(\text{observed}) \text{ is greater than } F^2(\text{calculated}) \text{ for the most}$ disagreeable/anomalous reflections]. It is very difficult to obtain good $\sigma^2(F_0^2) + (0.1917P)^2$ crystals of the title compound, and that which was used for the

> attempts. Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

> present experiment was the best available after many crystallization

H atoms were placed in calculated positions, with O-H distances

CP thanks Prince of Songkla University for a Graduate Study Grant. The authors thank Prince of Songkla University and the Pakistan Government, also the Malaysian Government and Universiti Sains Malaysia for a Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/ 635003/A118.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bamroongrugsa, N. (1999). Songklanakarin J. Sci. Technol. 21, 377-386.

- Boonnak, N., Chantrapromma, S., Fun, H.-K., Anjum, S., Atta-ur-Rahman & Karalai, C. (2005). Acta Cryst. E61, 0410-0412.
- Bruker (2002). SMART (Version 5.62) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chantrapromma, K., Saewan, N., Fun, H.-K., Chantrapromma, S. & Rahman, A. A. (2004). Acta Cryst. E60, 0312-0314.
- Chantrapromma, S., Boonnak, N., Fun, H.-K., Anjum, S. & Atta-ur-Rahman (2005). Acta Cryst. E61, o2136-o2138.
- Chantrapromma, S., Fun, H.-K., Razak, I. A., Laphookhieo, S. & Karalai, C. (2003). Acta Cryst. E59, o1864-o1866.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thongdeeying, P., Chantrapromma, S., Fun, H.-K., Anjum, S., Ali, S. & Ponglimanont, C. (2005). Acta Cryst. E61, o1861-o1863.
- Tomlinson, P. B. (1986). The Botany of Mangroves, pp. 352-357. Cambridge University Press.